Sains Malaysiana 54(8)(2025): 2045-2057
http://doi.org/10.17576/jsm-2025-5408-14
Microstructural Evolution and Performance of
Heat-Treated Ti6Al4V in Laser Powder Bed Fusion
(Evolusi Mikrostruktur dan Prestasi TI6AL4V Haba
Terawat Haba dalam Pelakuran Lapisan Serbuk Laser)
FARHANA MOHD FOUDZI1,2,*,
MINHALINA AHMAD BUHAIRI1,2,3, FATHIN ILIANA JAMHARI1,2,
NORHAMIDI MUHAMAD1,2, INTAN FADHLINA MOHAMED1,2, ABU
BAKAR SULONG1,2, NASHRAH HANI JAMADON1,2 & NABILAH
AFIQAH MOHD RADZUAN1,2
1Advanced
Manufacturing Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Department of
Mechanical and Manufacturing Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
3Doctoral School
on Materials Science and Technologies, Óbuda University, Nepszinhaz u. 8, 1081
Budapest, Hungary
Received: 21 February 2025/Accepted: 16 June 2025
Abstract
Ti6Al4V parts produced via laser powder
bed fusion (LPBF) frequently exhibit high residual stress, where heat treatment
has been utilized to relieve this stress. This study aims to investigate the
effect of annealing heat treatment on the overall performance of Ti6Al4V
fabricated using LPBF. Printed Ti6Al4V samples were heat treated at 935 °C for
8 hours with a heating rate of 5 °C/min and a cooling rate of 0.60 °C/min. The
overall performance such as physical properties, mechanical properties and
microstructure observation between as-built and heat-treated samples were
compared. The heat treatment was able to produce high-density parts, with
surfaces as smooth as 5.70 μm, reaching up to 99.28% density. The
annealing process significantly improved the ductility of Ti6Al4V parts by up
to 231%, while decreasing the tensile strength by 28% and the hardness by 13%.
The microstructure of as-built samples shifts from acicular α' martensite
to α+β phases after annealing at 935 °C for 8 hours, supporting the
changes in mechanical performance. This preliminary study concludes that the
heat treatment used following LPBF printing can create Ti6Al4V samples with
acceptable physical, mechanical, and microstructure properties.
Keywords: Hardness; heat treatment;
laser powder bed fusion; microstructure; Ti6Al4V
Abstrak
Produk
Ti6Al4V yang dihasilkan melalui kaedah pelakuran lapisan serbuk laser (LPBF) kebiasaannya
menjana tegasan baki yang tinggi dengan rawatan haba digunakan untuk
mengurangkan tegasan ini. Penyelidikan ini bertujuan untuk mengkaji kesan
rawatan haba penyepuhlindapan ke atas prestasi keseluruhan produk Ti6Al4V yang
dihasilkan menggunakan LPBF. Sampel Ti6Al4V telah dirawat haba pada 935 °C
selama 8 jam menggunakan kadar pemanasan sebanyak 5 °C/min dan kadar penyejukan
sebanyak 0.60 °C/min. Prestasi keseluruhan merangkumi sifat fizikal, sifat
mekanikal dan analisis mikrostruktur antara sampel sebelum dan selepas dirawat
haba telah dibandingkan. Rawatan haba yang telah dijalankan mampu menghasilkan
sampel berketumpatan setinggi
99.28% dengan permukaan selicin 5.70 μm. Proses penyepuhlindapan ini juga berjaya
meningkatkan kemuluran sampel Ti6Al4V sebanyak 231%, namun proses ini mengurangkan
kekuatan tegangan sebanyak 28% dan kekerasan sebanyak 13%. Mikrostruktur sampel
yang telah dicetak 3D berubah daripada jejarum α' martensit kepada fasa
campuran α+β selepas dirawat haba pada 935 °C selama 8 jam dan ini
menyokong perubahan sifat mekanikal. Kajian awal ini menyimpulkan bahawa
rawatan haba yang digunakan selepas percetakan LPBF mampu menghasilkan sampel
Ti6Al4V dengan sifat fizikal, mekanikal dan mikrostruktur yang boleh diterima.
Kata kunci: Kekerasan; mikrostruktur; pelakuran lapisan serbuk laser; rawatan haba; Ti6Al4V
REFERENCES
Abd-Elaziem, W., Elkatatny, S., Abd-Elaziem, A-E., Khedr, M.,
Abd El-Baky, M.A., Hassan, M.A., Abu-Okail, M., Mohammed, M., Järvenpää, A.,
Allam, T. & Hamada, A. 2022. On the current research progress of metallic
materials fabricated by laser powder bed fusion process: A review. Journal
of Materials Research and Technology 20: 681-707.
Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I. &
Everitt, N.M. 2016. Improving the fatigue behaviour of a selectively laser
melted aluminium alloy: Influence of heat treatment and surface quality. Materials
& Design 104: 174-182.
Aripin, M.A., Sajuri, Z., Jamadon, N.H., Baghdadi, A.H., Mohamed,
I.F., Syarif, J., Muhammad Aziz, A. & Jamhari, F.I. 2023. Microstructure
and mechanical properties of selective laser melted 17–4 PH stainless steel;
build direction and heat treatment processes. Materials Today
Communications 36: 106479.
Azgomi, N., Tetteh, F., Duntu, S.H. & Boakye-Yiadom, S.
2021. Effect of heat treatment on the microstructural evolution and properties
of 3D-printed and conventionally produced medical-grade Ti6Al4V ELI
alloy. Metallurgical and Materials Transactions A 52:
3382-3400.
Bartolomeu, F., Gasik, M., Silva, F.S., Miranda, G.
2022. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A
Review Focused on the Processing and Microstructural Parameters Influence on
the Final Properties. Metals 12: 986.
https://doi.org/10.3390/met12060986
Bassini, E., Sivo, A., Martelli, P.A., Rajczak, E., Marchese,
G., Calignano, F., Biamino, S. & Ugues, D. 2022. Effects of the solution
and first aging treatment applied to as-built and post-HIP CM247 produced via
laser powder bed fusion (LPBF). Journal of Alloys and Compounds 905:
164213.
Cao, L., Li, J., Hu, J., Liu, H., Wu, Y. & Zhou, Q. 2021.
Optimization of surface roughness and dimensional accuracy in LPBF additive
manufacturing. Optics & Laser Technology 142: 107246.
Chen, J., Fabijanic, D., Brandt, M., Zhao, Y., Ren, S.B.
& Xu, W. 2023. Dynamic α globularization in laser powder bed fusion
additively manufactured Ti-6Al-4V. Acta Materialia 255:
119076.
Chen, Y., Fu, J., Zhou, L., Zhao, Y., Wang, F., Chen, G.
& Qin, Y. 2024. Effect of heat treatment on microstructure and mechanical
properties of titanium alloy fabricated by laser–arc hybrid additive manufacturing. Coatings 14(5):
614.
Drstvenšek, I., Zupanič, F., Bončina, T., Brajlih,
T. & Pal, S. 2021. Influence of local heat flow variations on geometrical
deflections, microstructure, and tensile properties of Ti-6Al-4 V products in
powder bed fusion systems. Journal of Manufacturing Processes 65:
382-396.
Fathin Iliana Jamhari, Farhana Mohd Foudzi, Minhalina Ahmad
Buhairi, Abu Bakar Sulong, Nabilah Afiqah Mohd Radzuan, Norhamidi Muhamad,
Intan Fadhlina Mohamed, Nashrah Hani Jamadon & Kim Seah Tan. 2023a.
Influence of heat treatment parameters on microstructure and mechanical
performance of titanium alloy in LPBF: A brief review. Journal of
Materials Research and Technology 24: 4091-4110.
Fathin Iliana Jamhari, Farhana Mohd Foudzi, Minhalina Ahmad
Buhairi, Norhamidi Muhamad, Intan Fadhlina Mohamed, Abu Bakar Sulong &
Nabilah Afiqah Mohd Radzuan. 2023b. Impact of hot isostatic pressing on surface
quality, porosity and performance of Ti6Al4V manufactured by laser powder bed
fusion: A brief review. J. Tribol. 36: 1-15.
Ghio, E. & Cerri, E. 2022. Additive manufacturing of
AlSi10Mg and Ti6Al4V lightweight alloys via laser powder bed fusion: A review
of heat treatments effects. Materials 15(6): 2047.
Giovagnoli, M., Silvi, G., Merlin, M., Di Giovanni,
M.T. 2021. Effect of different heat-treatment routes on the impact properties
of an additively manufactured AlSi10Mg alloy. Materials Science and
Engineering: A 802. doi: 10.1016/j.msea.2020.140671.
Gruber, K., Stopyra, W., Kobiela, K., Madejski, B., Malicki,
M. & Kurzynowski, T. 2022. Mechanical properties of Inconel 718 additively
manufactured by laser powder bed fusion after industrial high-temperature heat
treatment. Journal of Manufacturing Processes 73: 642-659.
Guo, S., Li, Y., Gu, J., Liu, J., Peng, Y., Wang, P., Zhou, Q.
& Wang, K. 2023. Microstructure and mechanical properties of Ti6Al4V/B4C
titanium matrix composite fabricated by selective laser melting (SLM). Journal
of Materials Research and Technology 23: 1934-1946.
Hosseini, E. & Popovich. V.A. 2019. A review of
mechanical properties of additively manufactured Inconel 718. Additive
Manufacturing 30: 100877.
Kasperovich, G. & Hausmann, J. 2015. Improvement of
fatigue resistance and ductility of TiAl6V4 processed by selective laser
melting. Journal of Materials Processing Technology 220:
202-214.
Kerealme, S., Bai, C., Jia, Q., Xi, T., Zhang, Z., Li, D., Xia,
Z., Yang, R. & Yang, K. 2022. Effect of annealing temperature on as-cast
Ti6Al4V–5Cu alloy microstructure, tensile properties, and fracture
toughness. Materials Today Communications 33: 104508.
Knowles, C.R., Becker, T.H. & Tait, R.B. 2012. Residual
stress measurements and structural integrity implications for selective laser
melted Ti-6Al-4V: General article. South African Journal of Industrial
Engineering 23(3): 119-129.
Korkmaz, M.E., Gupta, M.K., Waqar, S., Kuntoğlu, M., Krolczyk,
G.M., Maruda, R.W. & Pimenov, D.Y. 2022. A short review on thermal
treatments of Titanium & Nickel based alloys processed by selective laser
melting. Journal of Materials Research and Technology 16:
1090-1101.
Kruth, J-P., Deckers, J., Yasa, E. & Wauthlé, R. 2012. Assessing
and comparing influencing factors of residual stresses in selective laser
melting using a novel analysis method. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226(6):
980-991.
Lebea, L., Ngwangwa, H.M., Desai, D. & Nemavhola, F.
2021. Experimental investigation into the effect of surface roughness and
mechanical properties of 3D-printed titanium Ti-64 ELI after heat
treatment. International Journal of Mechanical and Materials
Engineering 16: 16.
Lee, J-Y., Nagalingam, A.P. & Yeo, S.H. 2021. A review
on the state-of-the-art of surface finishing processes and related ISO/ASTM
standards for metal additive manufactured components. Virtual and
Physical Prototyping 16(1): 68-96.
Lee, W., Hyun, Y.T., Won, J.W.
& Yoon, J. 2024. Numerical simulation for β/α transformation of
Ti–6Al–4V alloy using a lattice Boltzmann - Cellular automata method. Journal
of Materials Research and Technology 32: 1416-1425.
Lekoadi, P., Tlotleng, M., Annan, K., Maledi, N. &
Masina, B. 2021. Evaluation of heat treatment parameters on microstructure and
hardness properties of high-speed selective laser melted Ti6Al4V. Metals 11(2):
255.
Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T.,
Richard, H.A. & Maier, H.J. 2013. On the mechanical behaviour of titanium
alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and
crack growth performance. International Journal of Fatigue 48:
300-307.
Majumdar, T., Bazin, T., Massahud
Carvalho Ribeiro, E., Frith, J.E. & Birbilis, N. 2019. Understanding the
effects of PBF process parameter interplay on Ti-6Al-4V surface properties. PLoS
ONE 14(8): e0221198.
Mazeeva, A., Masaylo, D., Konov, G. & Popovich, A. 2024.
Multi-metal additive manufacturing by extrusion-based 3D printing for
structural applications: A review. Metals 14(11): 1296.
Mazlan, M.R., Jamadon, N.H., Rajabi, A., Sulong, A.B., Mohamed,
I.F., Yusof, F. & Jamal, N.A. 2023. Necking mechanism under various
sintering process parameters - A review. Journal of Materials Research
and Technology 23: 2189-2201.
Minhalina Ahmad Buhairi, Farhana Mohd Foudzi, Fathin Iliana
Jamhari, Abu Bakar Sulong, Nabilah Afiqah Mohd Radzuan, Norhamidi Muhamad,
Intan Fadhlina Mohamed, Abdul Hadi Azman, Wan Sharuzi Wan Harun &
Al-Furjan, M.S.H. 2023. Review on volumetric energy density: Influence on
morphology and mechanical properties of Ti6Al4V manufactured via laser powder
bed fusion. Progress in Additive Manufacturing 8(2): 265-283.
Motyka, M. 2021. Martensite formation and decomposition
during traditional and AM processing of two-phase titanium alloys - An
overview. Metals 11(3): 481.
Narasimharaju, S.R., Zeng, W., See, T.L., Zhu, Z., Scott, P.,
Jiang, X. & Lou, S. 2022. A comprehensive review on laser powder bed fusion
of steels: Processing, microstructure, defects and control methods, mechanical
properties, current challenges and future trends. Journal of
Manufacturing Processes 75: 375-414.
Ni, C., Zhu, L., Zheng, Z., Zhang, J.,
Yang, Y., Yang, J., Bai, Y., Weng, C., Lu, W.F. & Wang, H. 2020. Effect of
material anisotropy on ultra-precision machining of Ti-6Al-4V alloy fabricated
by selective laser melting. Journal of Alloys and Compounds 848:
156457.
Pal, S., Bončina, T., Lojen, G., Brajlih, T., Fabjan, E.Š.,
Gubeljak, N., Finšgar, M. & Drstvenšek, I. 2024. Fine martensite and
beta-grain variational effects on mechanical properties of Ti–6Al–4V while
laser parameters change in laser powder bed fusion. Materials Science
and Engineering: A 892: 146052.
Shi, X., Ma, S., Liu, C., Chen, C., Wu, Q., Chen, X. &
Lu, J. 2016. Performance of high layer thickness in selective laser melting of
Ti6Al4V. Materials 9(12): 975.
Su, G., Chang, J., Zhai, Z., Wu, Y., Ma, Y., Yang, R. &
Zhang, Z. 2024. On the role of grain morphology in the mechanical behavior of
laser powder bed fusion metastable β titanium alloy. Materials
Science and Engineering: A 909: 146844.
Su, J., Jiang, F., Li, J., Tan, C., Xu, Z., Xie, H., Liu, J.,
Tang, J., Fu, D., Zhang, H. & Teng, J. 2022. Phase transformation
mechanisms, microstructural characteristics and mechanical performances of an
additively manufactured Ti-6Al-4V alloy under dual-stage heat treatment. Materials
& Design 223: 111240.
Ter Haar, G.M. & Becker, T.H. 2021. Low temperature
stress relief and martensitic decomposition in selective laser melting produced
Ti6Al4V. Material Design & Processing Communications 3(1):
e138.
Tsai, M-T., Chen, Y-W., Chao, C-Y.,
Jang, J.S.C., Tsai, C-C., Su, Y-L. & Kuo, C-N. 2020. Heat-treatment effects
on mechanical properties and microstructure evolution of Ti-6Al-4V alloy
fabricated by laser powder bed fusion. Journal of Alloys and Compounds 816:
152615.
Usha Rani, S., Sadhasivam, M., Kesavan, D., Pradeep, K.G.
& Kamaraj, M. 2024. A multi-scale microscopic study of phase
transformations and concomitant α/β interface evolution in additively
manufactured Ti-6Al-4V alloy. Materials Science and Engineering: A 900:
146400.
Wang, D., Dou, W. & Yang, Y. 2018. Research on selective
laser melting of Ti6Al4V: Surface morphologies, optimized processing zone, and
ductility improvement mechanism. Metals 8(7): 471.
Wang, M., Wu, Y., Lu, S., Chen, T., Zhao, Y., Chen, H. &
Tang, Z. 2016. Fabrication and characterization of selective laser melting
printed Ti–6Al–4V alloys subjected to heat treatment for customized implants
design. Progress in Natural Science: Materials International 26(6):
671-677.
Wang, Y., Yang, G., Zhou, S., Sun, C., Li, B., An, D., Zhang,
S. & Xiu, S. 2022. Effect of laser remelting on microstructure and
mechanical properties of Ti–6Al–4V alloy prepared by inside-beam powder
feeding. Materials Science and Engineering: A 861: 144266.
Zhou, Y., Wang, K., Sun, Z. & Xin,
R. 2022. Simultaneous improvement of strength and elongation of laser melting
deposited Ti-6Al-4V titanium alloy through three-stage heat treatment. Journal
of Materials Processing Technology 306: 117607.
*Corresponding
author; email: farhana.foudzi@ukm.edu.my