Sains Malaysiana 54(8)(2025): 2045-2057

http://doi.org/10.17576/jsm-2025-5408-14

 

Microstructural Evolution and Performance of Heat-Treated Ti6Al4V in Laser Powder Bed Fusion

(Evolusi Mikrostruktur dan Prestasi TI6AL4V Haba Terawat Haba dalam Pelakuran Lapisan Serbuk Laser)

 

FARHANA MOHD FOUDZI1,2,*, MINHALINA AHMAD BUHAIRI1,2,3, FATHIN ILIANA JAMHARI1,2, NORHAMIDI MUHAMAD1,2, INTAN FADHLINA MOHAMED1,2, ABU BAKAR SULONG1,2, NASHRAH HANI JAMADON1,2 & NABILAH AFIQAH MOHD RADZUAN1,2

 

1Advanced Manufacturing Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Doctoral School on Materials Science and Technologies, Óbuda University, Nepszinhaz u. 8, 1081 Budapest, Hungary

 

Received: 21 February 2025/Accepted: 16 June 2025

 

Abstract

Ti6Al4V parts produced via laser powder bed fusion (LPBF) frequently exhibit high residual stress, where heat treatment has been utilized to relieve this stress. This study aims to investigate the effect of annealing heat treatment on the overall performance of Ti6Al4V fabricated using LPBF. Printed Ti6Al4V samples were heat treated at 935 °C for 8 hours with a heating rate of 5 °C/min and a cooling rate of 0.60 °C/min. The overall performance such as physical properties, mechanical properties and microstructure observation between as-built and heat-treated samples were compared. The heat treatment was able to produce high-density parts, with surfaces as smooth as 5.70 μm, reaching up to 99.28% density. The annealing process significantly improved the ductility of Ti6Al4V parts by up to 231%, while decreasing the tensile strength by 28% and the hardness by 13%. The microstructure of as-built samples shifts from acicular α' martensite to α+β phases after annealing at 935 °C for 8 hours, supporting the changes in mechanical performance. This preliminary study concludes that the heat treatment used following LPBF printing can create Ti6Al4V samples with acceptable physical, mechanical, and microstructure properties.

Keywords: Hardness; heat treatment; laser powder bed fusion; microstructure; Ti6Al4V

 

Abstrak

Produk Ti6Al4V yang dihasilkan melalui kaedah pelakuran lapisan serbuk laser (LPBF) kebiasaannya menjana tegasan baki yang tinggi dengan rawatan haba digunakan untuk mengurangkan tegasan ini. Penyelidikan ini bertujuan untuk mengkaji kesan rawatan haba penyepuhlindapan ke atas prestasi keseluruhan produk Ti6Al4V yang dihasilkan menggunakan LPBF. Sampel Ti6Al4V telah dirawat haba pada 935 °C selama 8 jam menggunakan kadar pemanasan sebanyak 5 °C/min dan kadar penyejukan sebanyak 0.60 °C/min. Prestasi keseluruhan merangkumi sifat fizikal, sifat mekanikal dan analisis mikrostruktur antara sampel sebelum dan selepas dirawat haba telah dibandingkan. Rawatan haba yang telah dijalankan mampu menghasilkan sampel berketumpatan setinggi 99.28% dengan permukaan selicin 5.70 μm. Proses penyepuhlindapan ini juga berjaya meningkatkan kemuluran sampel Ti6Al4V sebanyak 231%, namun proses ini mengurangkan kekuatan tegangan sebanyak 28% dan kekerasan sebanyak 13%. Mikrostruktur sampel yang telah dicetak 3D berubah daripada jejarum α' martensit kepada fasa campuran α+β selepas dirawat haba pada 935 °C selama 8 jam dan ini menyokong perubahan sifat mekanikal. Kajian awal ini menyimpulkan bahawa rawatan haba yang digunakan selepas percetakan LPBF mampu menghasilkan sampel Ti6Al4V dengan sifat fizikal, mekanikal dan mikrostruktur yang boleh diterima.

Kata kunci: Kekerasan; mikrostruktur; pelakuran lapisan serbuk laser; rawatan haba; Ti6Al4V

 

REFERENCES

Abd-Elaziem, W., Elkatatny, S., Abd-Elaziem, A-E., Khedr, M., Abd El-Baky, M.A., Hassan, M.A., Abu-Okail, M., Mohammed, M., Järvenpää, A., Allam, T. & Hamada, A. 2022. On the current research progress of metallic materials fabricated by laser powder bed fusion process: A review. Journal of Materials Research and Technology 20: 681-707.

Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I. & Everitt, N.M. 2016. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Materials & Design 104: 174-182.

Aripin, M.A., Sajuri, Z., Jamadon, N.H., Baghdadi, A.H., Mohamed, I.F., Syarif, J., Muhammad Aziz, A. & Jamhari, F.I. 2023. Microstructure and mechanical properties of selective laser melted 17–4 PH stainless steel; build direction and heat treatment processes. Materials Today Communications 36: 106479.

Azgomi, N., Tetteh, F., Duntu, S.H. & Boakye-Yiadom, S. 2021. Effect of heat treatment on the microstructural evolution and properties of 3D-printed and conventionally produced medical-grade Ti6Al4V ELI alloy. Metallurgical and Materials Transactions A 52: 3382-3400.

Bartolomeu, F., Gasik, M., Silva, F.S., Miranda, G. 2022. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals 12: 986. https://doi.org/10.3390/met12060986

Bassini, E., Sivo, A., Martelli, P.A., Rajczak, E., Marchese, G., Calignano, F., Biamino, S. & Ugues, D. 2022. Effects of the solution and first aging treatment applied to as-built and post-HIP CM247 produced via laser powder bed fusion (LPBF). Journal of Alloys and Compounds 905: 164213.

Cao, L., Li, J., Hu, J., Liu, H., Wu, Y. & Zhou, Q. 2021. Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing. Optics & Laser Technology 142: 107246.

Chen, J., Fabijanic, D., Brandt, M., Zhao, Y., Ren, S.B. & Xu, W. 2023. Dynamic α globularization in laser powder bed fusion additively manufactured Ti-6Al-4V. Acta Materialia 255: 119076.

Chen, Y., Fu, J., Zhou, L., Zhao, Y., Wang, F., Chen, G. & Qin, Y. 2024. Effect of heat treatment on microstructure and mechanical properties of titanium alloy fabricated by laser–arc hybrid additive manufacturing. Coatings 14(5): 614.

Drstvenšek, I., Zupanič, F., Bončina, T., Brajlih, T. & Pal, S. 2021. Influence of local heat flow variations on geometrical deflections, microstructure, and tensile properties of Ti-6Al-4 V products in powder bed fusion systems. Journal of Manufacturing Processes 65: 382-396.

Fathin Iliana Jamhari, Farhana Mohd Foudzi, Minhalina Ahmad Buhairi, Abu Bakar Sulong, Nabilah Afiqah Mohd Radzuan, Norhamidi Muhamad, Intan Fadhlina Mohamed, Nashrah Hani Jamadon & Kim Seah Tan. 2023a. Influence of heat treatment parameters on microstructure and mechanical performance of titanium alloy in LPBF: A brief review. Journal of Materials Research and Technology 24: 4091-4110.

Fathin Iliana Jamhari, Farhana Mohd Foudzi, Minhalina Ahmad Buhairi, Norhamidi Muhamad, Intan Fadhlina Mohamed, Abu Bakar Sulong & Nabilah Afiqah Mohd Radzuan. 2023b. Impact of hot isostatic pressing on surface quality, porosity and performance of Ti6Al4V manufactured by laser powder bed fusion: A brief review. J. Tribol. 36: 1-15.

Ghio, E. & Cerri, E. 2022. Additive manufacturing of AlSi10Mg and Ti6Al4V lightweight alloys via laser powder bed fusion: A review of heat treatments effects. Materials 15(6): 2047.

Giovagnoli, M., Silvi, G., Merlin, M., Di Giovanni, M.T. 2021. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy. Materials Science and Engineering: A 802. doi: 10.1016/j.msea.2020.140671.

Gruber, K., Stopyra, W., Kobiela, K., Madejski, B., Malicki, M. & Kurzynowski, T. 2022. Mechanical properties of Inconel 718 additively manufactured by laser powder bed fusion after industrial high-temperature heat treatment. Journal of Manufacturing Processes 73: 642-659.

Guo, S., Li, Y., Gu, J., Liu, J., Peng, Y., Wang, P., Zhou, Q. & Wang, K. 2023. Microstructure and mechanical properties of Ti6Al4V/B4C titanium matrix composite fabricated by selective laser melting (SLM). Journal of Materials Research and Technology 23: 1934-1946.

Hosseini, E. & Popovich. V.A. 2019. A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing 30: 100877.

Kasperovich, G. & Hausmann, J. 2015. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. Journal of Materials Processing Technology 220: 202-214.

Kerealme, S., Bai, C., Jia, Q., Xi, T., Zhang, Z., Li, D., Xia, Z., Yang, R. & Yang, K. 2022. Effect of annealing temperature on as-cast Ti6Al4V–5Cu alloy microstructure, tensile properties, and fracture toughness. Materials Today Communications 33: 104508.

Knowles, C.R., Becker, T.H. & Tait, R.B. 2012. Residual stress measurements and structural integrity implications for selective laser melted Ti-6Al-4V: General article. South African Journal of Industrial Engineering 23(3): 119-129.

Korkmaz, M.E., Gupta, M.K., Waqar, S., Kuntoğlu, M., Krolczyk, G.M., Maruda, R.W. & Pimenov, D.Y. 2022. A short review on thermal treatments of Titanium & Nickel based alloys processed by selective laser melting. Journal of Materials Research and Technology 16: 1090-1101.

Kruth, J-P., Deckers, J., Yasa, E. & Wauthlé, R. 2012. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226(6): 980-991.

Lebea, L., Ngwangwa, H.M., Desai, D. & Nemavhola, F. 2021. Experimental investigation into the effect of surface roughness and mechanical properties of 3D-printed titanium Ti-64 ELI after heat treatment. International Journal of Mechanical and Materials Engineering 16: 16.

Lee, J-Y., Nagalingam, A.P. & Yeo, S.H. 2021. A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components. Virtual and Physical Prototyping 16(1): 68-96.

Lee, W., Hyun, Y.T., Won, J.W. & Yoon, J. 2024. Numerical simulation for β/α transformation of Ti–6Al–4V alloy using a lattice Boltzmann - Cellular automata method. Journal of Materials Research and Technology 32: 1416-1425.

Lekoadi, P., Tlotleng, M., Annan, K., Maledi, N. & Masina, B. 2021. Evaluation of heat treatment parameters on microstructure and hardness properties of high-speed selective laser melted Ti6Al4V. Metals 11(2): 255.

Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A. & Maier, H.J. 2013. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue 48: 300-307.

Majumdar, T., Bazin, T., Massahud Carvalho Ribeiro, E., Frith, J.E. & Birbilis, N. 2019. Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties. PLoS ONE 14(8): e0221198. 

Mazeeva, A., Masaylo, D., Konov, G. & Popovich, A. 2024. Multi-metal additive manufacturing by extrusion-based 3D printing for structural applications: A review. Metals 14(11): 1296.

Mazlan, M.R., Jamadon, N.H., Rajabi, A., Sulong, A.B., Mohamed, I.F., Yusof, F. & Jamal, N.A. 2023. Necking mechanism under various sintering process parameters - A review. Journal of Materials Research and Technology 23: 2189-2201.

Minhalina Ahmad Buhairi, Farhana Mohd Foudzi, Fathin Iliana Jamhari, Abu Bakar Sulong, Nabilah Afiqah Mohd Radzuan, Norhamidi Muhamad, Intan Fadhlina Mohamed, Abdul Hadi Azman, Wan Sharuzi Wan Harun & Al-Furjan, M.S.H. 2023. Review on volumetric energy density: Influence on morphology and mechanical properties of Ti6Al4V manufactured via laser powder bed fusion. Progress in Additive Manufacturing 8(2): 265-283.

Motyka, M. 2021. Martensite formation and decomposition during traditional and AM processing of two-phase titanium alloys - An overview. Metals 11(3): 481.

Narasimharaju, S.R., Zeng, W., See, T.L., Zhu, Z., Scott, P., Jiang, X. & Lou, S. 2022. A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. Journal of Manufacturing Processes 75: 375-414.

Ni, C., Zhu, L., Zheng, Z., Zhang, J., Yang, Y., Yang, J., Bai, Y., Weng, C., Lu, W.F. & Wang, H. 2020. Effect of material anisotropy on ultra-precision machining of Ti-6Al-4V alloy fabricated by selective laser melting. Journal of Alloys and Compounds 848: 156457.

Pal, S., Bončina, T., Lojen, G., Brajlih, T., Fabjan, E.Š., Gubeljak, N., Finšgar, M. & Drstvenšek, I. 2024. Fine martensite and beta-grain variational effects on mechanical properties of Ti–6Al–4V while laser parameters change in laser powder bed fusion. Materials Science and Engineering: A 892: 146052.

Shi, X., Ma, S., Liu, C., Chen, C., Wu, Q., Chen, X. & Lu, J. 2016. Performance of high layer thickness in selective laser melting of Ti6Al4V. Materials 9(12): 975.

Su, G., Chang, J., Zhai, Z., Wu, Y., Ma, Y., Yang, R. & Zhang, Z. 2024. On the role of grain morphology in the mechanical behavior of laser powder bed fusion metastable β titanium alloy. Materials Science and Engineering: A 909: 146844.

Su, J., Jiang, F., Li, J., Tan, C., Xu, Z., Xie, H., Liu, J., Tang, J., Fu, D., Zhang, H. & Teng, J. 2022. Phase transformation mechanisms, microstructural characteristics and mechanical performances of an additively manufactured Ti-6Al-4V alloy under dual-stage heat treatment. Materials & Design 223: 111240.

Ter Haar, G.M. & Becker, T.H. 2021. Low temperature stress relief and martensitic decomposition in selective laser melting produced Ti6Al4V. Material Design & Processing Communications 3(1): e138.

Tsai, M-T., Chen, Y-W., Chao, C-Y., Jang, J.S.C., Tsai, C-C., Su, Y-L. & Kuo, C-N. 2020. Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion. Journal of Alloys and Compounds 816: 152615.

Usha Rani, S., Sadhasivam, M., Kesavan, D., Pradeep, K.G. & Kamaraj, M. 2024. A multi-scale microscopic study of phase transformations and concomitant α/β interface evolution in additively manufactured Ti-6Al-4V alloy. Materials Science and Engineering: A 900: 146400.

Wang, D., Dou, W. & Yang, Y. 2018. Research on selective laser melting of Ti6Al4V: Surface morphologies, optimized processing zone, and ductility improvement mechanism. Metals 8(7): 471.

Wang, M., Wu, Y., Lu, S., Chen, T., Zhao, Y., Chen, H. & Tang, Z. 2016. Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design. Progress in Natural Science: Materials International 26(6): 671-677.

Wang, Y., Yang, G., Zhou, S., Sun, C., Li, B., An, D., Zhang, S. & Xiu, S. 2022. Effect of laser remelting on microstructure and mechanical properties of Ti–6Al–4V alloy prepared by inside-beam powder feeding. Materials Science and Engineering: A 861: 144266.

Zhou, Y., Wang, K., Sun, Z. & Xin, R. 2022. Simultaneous improvement of strength and elongation of laser melting deposited Ti-6Al-4V titanium alloy through three-stage heat treatment. Journal of Materials Processing Technology 306: 117607.

 

*Corresponding author; email: farhana.foudzi@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next